LESSON PLAN

SUB: ENERGY CONVERSION - II BRANCH:- ELECTRICAL ENGG.

SEMESTER: 5th

SESSION:2025-2026

NAME OF FACULTY: NIBEDITA HO

GOVERNMENT POLYTECHNIC, **BHADRAK**

HOD (ELECT

G.P.BHADRA

Academic Co-ordinator

Academic Co-ordinate

Govt. Polytechnic, Bhadrak

Principal Govt.Polytechnic

Bhadrak

Discipline: Electrical Engg.	Semester: 5 th	Name of the Teaching Faculty : Nibedita Ho
Subject: Energy Conversion - II	No. of Days/per week class allotted:4	Semester from date: 14.07.2025 to 15.11.2025 No. of Weeks:15
Week	Class Day	Theory
1 st	1 st	Production of rotating magnetic field.
	2 nd	Constructional feature of Squirrel cage and Slipring induction motors.
	3 rd	Working principles of operation of 3-phaseInduction motor.
	4 th	Define slip speed, slip and establish the relationof slip with rotor quantities.
	1 st	Derive expression for torque during starting andrunning conditions and derive conditions for maximum torque. (numerical problems)
2 nd	2 nd	Torque-slip characteristics.relation between fullload torque and starting torque (numerical problems)
	3 rd	Establish the relations between Rotor Copperloss, Rotor output and Gross Torque and relationship of slip with rotor copperloss. (numerical problems)
	4 th	Methods of starting and different types of starters used for three phase Induction motor.
3 _{rd}	1 st	Explain speed control by Voltage Control, Rotorresistance control, Pole changing, frequency control methods.
	2 nd	Plugging as applicable to three phase inductionmotor.
	3 rd	Describe different types of motor enclosures.
	4 th	Explain principle of Induction Generator and state its applications
4 th	1 st	Basic working principle of alternator and therelation between speed and frequency
	2 nd	Terminology in armature winding and expressions for winding factors (Pitch factor, Distributionfactor).
	3 rd	Explain harmonics, its causes and impact on winding factor.
	4 th	E.M.F equation of alternator. (Solve numerical problems).
	1 st	Armature reaction and its effect on emf at different power factor of load.
5 th	2 nd	The vector diagram of loaded alternator.(numerical

		problems)
	3 rd	Open circuit test of alternator
	4 th	Short circuit test of alternator
6 th	1 st	Determination of voltage regulation of Alternatorby direct loading and synchronous impedance method. (Solve numerical problems)
	2 nd	Parallel operation of alternator using synchro-scope and dark & bright lamp method.
	3 rd	Distribution of load by parallel connectedalternators.
	4 th	Constructional feature of Synchronous Motor
7 th	1 st	Principles of operation, concept of load angle
	2 nd	Derive torque, power developed.
	3 rd	Effect of varying load with constant excitation.
	4 th	Effect of varying excitation with constant load.
	1 st	Effect of varying excitation with constant load.
	2 nd	Power angle characteristics of cylindrical rotormotor.
8 th	3 rd	Power angle characteristics of cylindrical rotormotor.
	4 th	Explain effect of excitation on Armature currentand power factor.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 st , , , , , , , , , , , , , , , , , , ,	Explain effect of excitation on Armature currentand power factor.
9 th	2 nd	Hunting in Synchronous Motor
3002	3 rd	Function of Damper Bars in synchronous motorand generator.
	4 th	Describe method of starting of Synchronousmotor.
	1 st	State application of synchronous motor.
	2 nd	Ferrari's principle.
10 th	3 rd	Double revolving field theory and Cross-field theory to analyzo
	4 th	starting torque of 1-phase induction motor. Working principle, Torque speed characteristics, performance characteristics and application of Split phase motor
	1 st	Working principle, Torque speed characteristics, performance characteristics and application of Capacitor

ľ

11 th		Start motor.
	2 nd	Working principle, Torque speed characteristics, performance characteristics and application of Capacitor start, capacitor run motor.
	3 rd	Working principle, Torque speed characteristics, performance characteristics and application of Permanent capacitor type motor.
	4 th	Working principle, Torque speed characteristics, performance characteristics and application of Shaded pole motor.
12 th	1 st	Method to change the direction of rotation of above motors.
	2 nd	Construction, working principle, running characteristic and application of single phase series motor.
	3 rd	Construction, working principle and application of Universal motors.
	4 th	Working principle of Repulsion start Motor,
13 th	1 st	Working principle of Repulsion start Induction runmotor.
	2 nd	Working principle of Repulsion Induction motor.
	3 rd	Principle of Stepper motor. Classification of Stepper motor.
	4 th	Principle of variable reluctant stepper motor.
14 th	1 st	Principle of Permanent magnet stepper motor.
	2 nd	Principle of hybrid stepper motor.
	3 rd	Applications of Stepper motor.
	4 th	Construction of Core type, shell type transformer
15 th	1 st	Grouping of winding, Advantages
	2 nd	parallel operation of the three phasetransformers.
	3 rd	tap changer (On/Off load tap changing)
	4 th	Maintenance Schedule of Power Transformers.

Signature of the faculty Concerned

Lect.in Elect.Engg.
Govt.Poly.Bhadrak