LESSON PLAN

SUB: MACHINE DESIGN

BRANCH:- MECHANICAL ENGG.

SEMESTER: 5TH

NAME OF FACULTY: ER. SRI SABYASACHI JAGANNATH MISHRA

GOVERNMENT POLYTECHNIC, BHADRAK SESSION:2025-26

Hod ,Mechanical

Academic Co-ordinator

Academic Co-ordinator

Principal Govt. Polytechnic, Bhadrak

ACADEMIC LESSON PLAN FOR DESIGN OF MACHINE ELEMENTS (TH-2)

Discipline: MECHANICAL ENGG	Semester: 5th	Name of the Teaching Faculty:- SRI SABYASACHI JAGANNATH MISHRA.
Subject:	No. of	SemesterFrom date: 14/07/2025Tc Date: 15/11/2025
MACHINE	days/per	
DESIGN	week class	No.ofWeeks:15
	allotted:04	
Week	ClassDay	TheoryTopics
		Introduction
1 ST	1 ST	
		IntroductiontoMachineDesignandClassifyit.
	2 ND	Differentmechanicalengineeringmaterialsusedindesignwith
		their
		usesandtheirmechanicalandphysicalproperties Differentmechanicalengineeringmaterialsusedindesignwit
	3 RD	
		htheir the immediate and physical properties
		usesandtheirmechanicalandphysicalproperties Differentmechanicalengineeringmaterialsusedindesignwit
	4 TH	
		htheir
	97	usesandtheirmechanicalandphysicalproperties
2 ND	1 ST	Differentmechanicalengineeringmaterialsusedindesignwit
		htheir Warieslandhausical properties
	100	usesandtheirmechanicalandphysicalproperties
	2 ND	Defineworkingstress, yieldstress, ultimatestress & fact
		orofsafetyand stress –straincurveforM.S&C.I.
		ModesofFailure(Byelasticdeflection,
		ModesofFailure(Byelasticdeflection, generalyielding&fracture)
	3 RD	Defineworkingstress, yieldstress, ultimatestress & fact
		orofsafetyand stress –straincurveforM.S&C.I.
		oroisaletyalid sitess – strained velotivises ext
		ModesofFailure(Byelasticdeflection,
		generalyielding&fracture)
	4 TH	Defineworkingstress, yieldstress, ultimatestress & factor
		ofsafetyandstress-straincurveforM.S &C.I.
		ModesofFailure(Byelasticdeflection,generalyielding&
		fracture
- P.D.	1ST	Statethefactorsgoverningthedesignofmachine
3 RD	15.	elements.
	2 ND	Describe designprocedure
	3 RD	Describe designprocedure
	4 TH	Discussion of PYQ
	4***	Design of fastening elements
my y	1ST	Joints and their classification.
4 TH	2 ND	State types of welded joints.
		State types of welded joints. State advantages of welded joints over other joints.
	3 RD	State advantages of weided joints over state jumps
	4 TH	Design of welded joints for eccentric loads.
5 TH	1 ST	Numerical on Welded Joint
	2 ND	Numerical on Welded Joint
	3 RD	State types of riveted joints and types of rivets.

ans.

	4 TH	Describe failure of riveted joints.
6 TH	1 ST	Determine strength & efficiency of riveted joints.
	2 ND	Design riveted joints for pressure vessel.
	3 RD	Numerical on Riveted Joint
	4 TH	Numerical on Riveted Joint Numerical on Riveted Joint
	4111	Design of shafts and Keys
o TU	1ST	State the function and material of shafts.
7 TH	Isi	
	2 ND	Design solid & hollow shafts to transmit a given power at given rpm based on a) Strength: (i) Shear stress, (ii) Combined bending tension;
	3 RD	Design solid & hollow shafts to transmit a given power at given rpm based on b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
	4 TH	Numerical on above
8 TH	1 ST	Numerical on above
	2 ND	State standard size of shaft as per I.S, State function of keys, types of keys & material of keys
	3 RD	Describe failure of key, effect of key way.
	4 TH	Design rectangular sunk key considering its failure against shear & crushing
9 TH	1 ST	Design rectangular sunk key by using empirical relation for given diameter of shaft.
	2 ND	State specification of parallel key, gib-head key, taper key as per I.S.
	3 RD	Solve numerical on Design of Shaft and keys.
0	4 TH	Solve numerical on Design of Shaft and keys.
		Design of Coupling:
10 TH	1 ST	Design of Shaft Coupling
	2 ND	Requirements of a good shaft coupling, Types of Coupling.
	3 RD	Design of Sleeve or Muff-Coupling
	4 TH	Design of Sleeve or Muff-Coupling
11 TH	1 ST	Numerical on above
	2 ND	Numerical on above
	3 RD	Design of Clamp or Compression Coupling.
	4 TH	Design of Clamp or Compression Coupling.
12 TH	1 ST	Design of Clamp or Compression Coupling.
	2 ND	Numerical on above
	3 RD	Numerical on above
	4 TH	Numerical on above
	. 9	Design a closed coil helical spring
13 TH	1 ST	Materials used for helical spring. Standard size spring wire. (SWG).
	2 ND	Terms used in compression spring.
o	3 RD	Stress in helical spring of a circular wire.
	4 TH	Stress in helical spring of a circular wire.
14 TH	1 ST	Stress in helical spring of a circular wire.
	2 ND	Deflection of helical spring of circular wire.
	3 RD	Deflection of helical spring of circular wire.
	4 TH	Surge in spring.
15 TH	1 ST	Numerical on design of closed coil helical compression

GAM 2

	spring.
2 ND	Numerical on design of closed coil helical compression spring.
3 RD	Numerical on design of closed coil helical compression spring.
4 TH .	Numerical on design of closed coil helical compression spring.

LearningResouces:

- 01. MachineDesignby Pandya&Shah, CharotarPP
- $02.\ A Textbook of Machine Design by R.S. Khurmi \& J. K Gupta, S. Chand$
- $03. \ \ \, A Textbook of Machine \ Design by P.C. Sharma \& D.K. Agrawal, S, K, Kataria$
- 04. DesignofMachineElementsby V.B.Bhandari,TMH
- 05. DesignDataBookbyS.MD.Jalaudeen,AnuradhaPublication

14/7/25

Sabyasachi Jagannath Mishra Lect. Stage-l Mechanical Engineering Govt. Polytechnic , Bhadrak.