LESSON PLAN

SUBJECT: APPLIED PHYSICS-I

BRANCH: MECHANICAL ENGINEERING

SEMESTER: 1ST (2025-26)

NAME OF THE FACULTY: ASEEMA BARIK

GOVERNMENT POLYTECHNIC, BHADRAK

HOD. Humahites & Sc

Academic Co-ordinator
Academic Co-ordinator

Govt. Polytechnic, Bhadrak

GOVT. POLYTECHNIC, BHADRAK

AT: TENTULIGADIA, VIA: RAHANDIA, DIST: BHADRAK, PIN: 756135

E-mail: principalgpbhadrak@gmail.com Tel: 9438806922

LESSON PLAN FOR WINTER SEMESTER – 2025 Dept. of Humanities & Science, Govt .Polytechnic, Bhadrak

Name of the Faculty: ASEEMA BARIK

Course Code: TH-2

Theory: APPLIED PHYSICS-I

Total Periods:60

Examination: WINTER (2025)

Sem: FIRST

Internal Assessment/ Sessional: 30

End Sem. Exam: 70 Total Mark:100

. Class Start: 06.08.2025

Discipline: Humanities & Science	Semester: 1 ST (2025)	Name of the Teaching Faculty : Aseema Barik
Subject: Applied Physics-I	No. of Days/per week class allotted: 04	Semester from date: 06.08.2025 To Date: 04.12.2025 No. of Weeks: 15
Week	Class Day	Theory/ Topics
1 st	1 st	 Brief discussion on geometry and mathematics Definition of physical quantities ,fundamental units ,derived units
	2 nd	System of units (FPS, CGS and SI units)Definition of dimension
	3 rd	 Dimensional formula of physical quantities Dimensional equation and principle of homogeneity
	4 th	 Applications of dimensional equation (conversion from one system to another system)
2 nd	1 st	 Applications of dimensional equation (checking of dimension equations)
	2 nd	 Applications of dimensional equation (derivation of simple equations)
	3 rd	 Measuring instruments, Least count, types of measurements
p	4 th	 Errors in measurements (systematic,random), Absolute error
3 rd	1 st	 Error propagation, error estimation & significant figures
	2 nd	 Definition & concept of Scalar and Vector quantities
	. 3. rd	 Representation of vectors and types of vectors

Addition and subtraction of vectors

4 th	1 st	 Triangle and Parallelogram Law (statement only)
	2 nd	Scalar and Vector product
	3 rd	Resolution of vector and its application to inclined plane and lawn roller
	4 th	 Concept of Force and Momentum Statement and derivation of conservation of linear momentum
5 th	1 st	 Applications of linear momentum such as recoil of gun, rockets, impulse
	. 2 nd	 Circular motion, definition of angular displacement, angular velocity & acceleration, frequency, time period
	3 rd	Relation between v, ω and a, α
	4 th	Centripetal and centrifugal forces with live examples, expression & applications such as banking roads and bending of cyclist
6 th	1 st	 Definition of Work and units, Examples of zero work, positive work, negative work
	2 nd	Friction: Definition, concept and types (static and dynamic)
	3 rd	 Laws of Limiting Friction, Co-efficient of friction
	4 th	 Reducing friction and its engineering applications
7 th	1 st	 Work done in moving an object on horizontal and inclined plane for rough and plane surfaces and related applications
	2 nd	Concept of energy and its unitsKinetic energy
	3 rd	 Gravitational potential energy with examples and derivations
	4 th	 Mechanical energy, conservation of mechanical energy for freely falling bodies, transformation of energy (example)
8 th	1 st	 Concept of Power and its units Power and work relationship, calculation of power
	2 nd	Translational and Rotational motions with examples
	3 rd	 Definition of Torque and angular momentum and their examples
	4 th	 Conservation of angular momentum (quantitative) and its applications
9 th	1 st	■ 1 ST INTERNAL ASSESSMENT
	2 nd	 Moment of inertia and its physical significance Radius of gyration for rigid body
. —		

	. 3 rd	 Theorems of parallel and perpendicular axes(statements only)
	4 th	 Moment of inertia of rod, disc, ring and sphere(hollow and solid) [formulae only]
10 th	1 st	Concept of elasticity, definition of stress and strain
	2 nd	 Moduli of elasticity, Hooke's law Significance of stress-strain curve
	3 rd	 Definition of pressure and units Atmospheric pressure, Gauge pressure, absolute pressure
	4 th	■ Fortin's Barometer and its applications
11 th	1 st	 Concept of surface tension and units Cohesive and adhesive forces
	2 nd	 Angle of contact, ascent formula(no derivation), applications of surface tension
	3 rd	 Viscosity and co-efficient of viscosity, terminal velocity
	4 th	 Stoke's law and effect of temperature on viscosity Application of hydraulic systems
12 th	1 st	■ Concept of Hydrodynamics, fluid motion
	2 nd	 Stream line and turbulent flow, Reynold's number Equation of continuity
	3 rd	 Bernoulli's theorem (only formula and numerical) and its applications
	4 th	■ Concept of heat and temperature
13 th	1 st	 Models of heat transfer (conduction, convection and radiation with examples)
	2 nd	Specific heat, scales of temperature and their relationship
	3 rd	 Types of thermometer (Mercury thermometer, Bimetallic thermometer, Pyrometer) and their uses
	4 th	 Expansion of solids, liquids and gases
14 th	1 st	 2nd INTERNAL ASSESSMENT
	2 nd	 Co-efficient of linear, surface and cubical expansion and numericals
	3 rd	 Relation between different types of co-efficient of expansions
	4 th	 Co-efficient of thermal conductivity and applications
15 th	1 st	 Previous year question discussion
	2 nd	Short type question discussion
		· · · · · · · · · · · · · · · · · · ·

3 rd	 Important question discussion 	
4 th	 Important question discussion 	

Signature of the Faculty